Hodge Theory and the Mordell-weil Rank of Elliptic Curves over Extensions of Function Fields

نویسنده

  • AMBRUS PÁL
چکیده

We use Hodge theory to prove a new upper bound on the ranks of Mordell-Weil groups for elliptic curves over function fields after regular geometrically Galois extensions of the base field, improving on previous results of Silverman and Ellenberg, when the base field has characteristic zero and the supports of the conductor of the elliptic curve and of the ramification divisor of the extension are disjoint.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

Selmer groups and Mordell-Weil groups of elliptic curves over towers of function fields

In [12] and [13], Silverman discusses the problem of bounding the Mordell-Weil ranks of elliptic curves over towers of function fields. We first prove generalizations of the theorems of those two papers by a different method, allowing non-abelian Galois groups and removing the dependence on Tate’s conjectures. We then prove some theorems about the growth of Mordell-Weil ranks in towers of funct...

متن کامل

Three lectures on elliptic surfaces and curves of high rank

Three lectures on elliptic surfaces and curves of high rank Noam D. Elkies Over the past two years we have improved several of the (Mordell–Weil) rank records for elliptic curves over Q and nonconstant elliptic curves over Q(t). For example, we found the first example of a curve E/Q with 28 independent points P i ∈ E(Q) (the previous record was 24, by R. Martin and W. McMillen 2000), and the fi...

متن کامل

Elliptic Curves with Large Rank over Function Fields

We produce explicit elliptic curves over Fp(t) whose Mordell-Weil groups have arbitrarily large rank. Our method is to prove the conjecture of Birch and Swinnerton-Dyer for these curves (or rather the Tate conjecture for related elliptic surfaces) and then use zeta functions to determine the rank. In contrast to earlier examples of Shafarevitch and Tate, our curves are not isotrivial. Asymptoti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013